Planning with Continuous Resources in Stochastic Domains

Content Areas: Planning under uncertainty, Markov decision processes, Search.

Abstract type of problem is of general interest, as it fits a large class of
(stochastic) logistics problems, and many more.

We consider the problem of optimal planning Past work has dealt with various variants of this problem.
in stochastic domains with metric resource con- pajated work on MDPs with resource constraints includes the
straints. Our goal is to generate a policy whose 1, qe| of constrained MDPs developed in the OR commu-
expected sum of rewards is maximized for a given iy rAjtman, 1999. In this model, a linear program includes
initial state. We consider a general formulation mo- o otraints on resource consumption and is used to find the
tivated by our application domain — planetary ex- ot feasible policy, given an initial state and resource alloca-
ploration —in which the choice of an action ateach i, gyt a drawback of the constrained MDP model is that it
step may depend on the current resource levels. We 565 not include resources in the state space, and thus a pol-
adapt the forward search algorithm AO* to handle oy -annot he conditioned on resource availability. Moreover,
our continuous state space efficiently, as demon- oqrce consumption is modeled as deterministic. In the area
strated by our experimental results. of decision-theoretic planning, several techniques have been

proposed to handle uncertain continuous variables[(eegg

et al, 2004; Younes and Simmons, 20D4Finally, [Smith,

1 Introduction 2004; van den Briegt al, 2004 considered the problem of
There are many problems inherent in communication with reover-subscription planning, i.e., planning with a large set of
mote devices such as planet exploratory ro{Bresinaetal, goals which is not entirely achievable. They provide tech-

2004. Therefore, remote rovers must operate autonomousliques for selecting a subset of goals for which to plan, but
over substantial periods of time. Moreover, the surfaces othey deal only with deterministic domains.
planets are very uncertain environments: there is a great deal Our main contribution is an implemented algorithm that
of uncertainty in the duration, energy consumption, and outhandles all of these problems together: oversubscription plan-
come of arover’s actions. Currently, instructions sent to planning, uncertainty, and limited continuous resources. Our ap-
etary rovers are in the form of a simple plan for attaining aproach is to include resources in the state description. This
single goal (e.g., photographing some interesting rock). Thellows decisions to be made based on resource availabil-
rover attempts to carry this out, and when done remains idlgty, and it allows a stochastic resource consumption model
If it fails early on, it makes no attempt to recover and possi-(as opposed to constrained MDPs). Although this increases
bly achieve an alternative goal. This may have serious impaahe size of the state space, we assume that the value func-
on missions. For instance, it has been estimated that the 19%i6ns may be represented compactly and we use the work of
Mars Pathfinder rover spent between 40% and 75% of its tim&eng et al. (2004) on piecewise constant and linear approxi-
doing nothing because plans did not execute as expected. mations of dynamic programming (DP) in our implementa-
Working in this application domain, our goal is to provide tion. However, standard DP does not exploit the fact that
a planning algorithm that can generate a reliable contingerthe reachable state space is much smaller than the complete
plan that can respond to different events and action outcomestate space, especially in the presence of resource constraints.
This plan must optimize the expected value of the experi-Our contribution in this paper is to show how to use the
ments conducted by the rover, while being aware of its timeforward heuristic search algorithm called AQPearl, 1984;
energy, and memory constraints. In particular, we must payansen and Zilberstein, 20Pfo solve MDPs with resource
attention to the fact that given any initial state, there are mangonstraints and continuous resource variables. Unlike DP,
experiments the rover could conduatpst combinations of forward search keeps track of the trajectory from the start
whichare infeasible due to resource constraints. General feastate to each reachable state, and thus it can check whether the
tures of our problem include: (1) concrete starting state; (2}rajectory is feasible or violates a resource constraint. This al-
continuous resources (including time) with stochastic confows heuristic search to prune infeasible trajectories and can
sumption; (3) uncertain action effects; (4) several possiblaramatically reduce the number of states that must be consid-
one-time-rewards, only a subset of which are achievable. Thisred to find an optimal policy. This is particularly important

in our domain where the discrete state space is huge (expo- Given an initial statgng, xo), the objective is to find a
nential in the number of goals), yet the portion reachable fronpolicy that maximizes expected cumulative reward. In our
any initial state is relatively small because of the resourceapplication, this is equal to the sum of the rewards for the
constraints. Itis well-known that heuristic search can be morgoals achieved before running out of a resource. Note that
efficient than DP because it leverages a search heuristic aridere is no direct incentive to save resources: an optimal solu-
reachability constraints to focus computation on the relevantion would save resources only if this allows achieving more
parts of the state space. We show that for problems with regoals. Therefore, we stay in a standard decision-theoretic
source constraints, this advantage can be even greater thtamework. This problem is solved by solving Bellman'’s op-
usual because resource constraints further limit reachabilitytimality equation, which takes the following form:

0
2 Problem Definition and Solution Approach Vnx) =0,
Problem definition We consider a Markov decision pro- V,/™(x) = max [Z Pr(n’ |,n,x,a) ,
cess (MDP) with both continuous and discrete state vari- a€An() | N
ables. Continuous variables typically represent resources,
where one possible type of resource is time. Discrete vari- / Pr(x' | n,x,a,n") (R (X') + V5, (x)) dx’
ables model other aspects of the state, including (in our appli- x
cation) the set of goals achieved so far by the rover. (Keepingvhere A,,(x) denotes the set of actions executablérinx).
track of already-achieved goals ensures a Markovian rewarblote that the index represents sequential order but does not
structure, since we reward achievement of a goal only if it wasiecessarily correspond to time in the planning problem. The
not achieved in the past.) Although our models typically con-duration of actions is one of the biggest source of uncertainty
tain multiple discrete variables, this plays no role in the de-4n our rover problems, and we typically model time as one of
scription of our algorithm, and so, for notational conveniencethe continuous resources.
we model the discrete component as a single variable.

A Markov states € S is a pair(n,x) wheren € Nisthe golution approach Feng et al[2004 describe a dynamic
discrete variable, and = (x;) is a vector of continuous vari- programming (DP) algorithm that solves this Bellman opti-
ables. The domain of eaah is an intervalX; of the real line, majity equation. In particular, they show that the continuous
andX =), X is the hypercube over which the continuous jntegral overx’ can be computed exactly, as long as the tran-
variables are defined. We assume an explidital state, de- sition function satisfies certain conditions. We defer a dis-
noted (no, xo), and one or more absorbirtgrminal states cyssjon of the details of their approach until Section 3.3, and
One terminal state corresponds to the situation in which alfreat this computation as a black-box for now. This allows us
goals have been achieved. Others model situations in whicgy simplify the description of our algorithm in the next section
resources have been exhausted or an action has resultedjRd focus on our contribution.
by the rover and terminating plan execution. ~ hugesize of the state space, which makes DP infeasible.

State transition probabilitiesare given by the function One reason for this size is the existence of continuous vari-
Pr(s’ | s,a), wheres = (n,x) denotes the state before ac- aples. But even if we only consider the discrete compo-
tiona ands’ = (n',x’) denotes the state after actionalso nent of the state space, the size of the state space is expo-
called the arrival state. FollowingFenget al, 2004, the nential in the number of propositional variables comprising
probabilities are decomposed into: (1) the discrete marginalghe discrete component. To address this issue, we use for-
Pr(n'|n,x,a). For all (n,x,a), >_,,cyPr(n'In,x,a) = ward heuristic search in the form of a novel variant of the
1, the continuous conditional®r(x’|n,x,a,n’). For all AO* algorithm. Recall that AO* is an algorithm for search-
(n,x,a,n"), [,cx Pr(x'In,x,a,n')dx" = 1. Any transition ing AND/OR graphgPearl, 1984; Hansen and Zilberstein,
that results in negative value for some continuous variable i2001]. Such graphs arise in problems where there are choices
viewed as a transition into a terminal state. (the OR components), and each choice can have multiple con-

The reward of a transition is a function of the arrival sequences (the AND component), as is the case in planning
state only. More complex dependencies are possible, buinder uncertainty. AO* can be very effective in solving such
this is sufficient for our goal-based domain models. We lefplanning problems when there is a large state space. One rea-
R, (x) > 0 denote theeward associated with a transition to son for this is that AO* only considers states that are reach-
state(n, x). able from an initial state. Another reason is that given an

In our application domain, continuous variables modelinformative heuristic function, AO* focuses on states that are
non-replenishable resources. We also assume that each aeachable in the course of executing a good plan. As a result,
tion has some minimal positive consumption of at least onédO* often finds an optimal plan by exploring a small fraction
resource. An important implication of this assumption isof the entire state space.
that the number of possible steps in any execution of a plan The challenge we face in applying AO* to this problem is
is bounded, which we refer to by saying the problem has dhe challenge of performing state-space search in a continu-
bounded horizonNote that the actual number of steps until ous state space. Our solution is to search iaggregate state
termination can vary depending on actual resource consumgpacethat is represented by a search graph in which there is
tion. a node for each distinct value of the discrete component of

1)

the state, and each node corresponds to the continuous regiprobability density of passing through stdie x) under the

of the state space for which the value of the discrete compoeurrent greedy policy. It is obtained Ipyogressinghe initial
nent is the same. In this approach, different actions may bsetate forward through the optimal actions of the greedy policy.
optimal for different Markov states in the aggregate state aswith eachP,,, we maintain the probability of passing through
sociated with a search node, especially since the best actionunder the greedy policyd (P,) = Jrex Pn(x)dx.

is likely to depend on how much energy or time is remain-e f, (-) —the heuristic function. For eashe X, H,, (x) is a
ing. To address this problem and still find an optimal solu-heuristic estimate of the optimal expected reward from state
tion, we associate a value estimate with each of the Markoyn’ X).

states in an aggregate. Following the approadfrefgetal. o v/, (.) — the value function. At the leaf nodes of the explicit
2004, this value function can be represented and computedraph,V,, = H,,. At the non-leaf nodes of the explicit graph,
EffICIGrltly due to the.ContinUOUS nature of theS_e_States and th@n is obtained by backing up thH functions from the de-
simplifying assumptions made about the transition functionsscendant leaves. If the heuristic functiiy, is admissible in
Using these value estimates, we can associate different agt| leaf nodes:’, thenV,, (x) is an upper bound on the opti-

tions with different Markov states within the aggregate statemal reward to come frortin, x) for all x reachable under the
corresponding to a search node. greedy policy.

In order to select which node on the fringe of the search, , _ a heuristic estimate of the increase in value of the

graph to expand, we also need to associate a heuristic valyeedy policy that we would get by expanding nedef H,,

with each search node. Thus, we maintain both a value fungs admissible them,, represents an upper bound on the gain
tion for Markov states (which is used to make action selecin expected reward. The gain is used to determine the pri-
tions) and a heuristic estimate for each search node or agyity of nodes in the OPEN lisi(, = 0 if n is in CLOSED),
gregate state (which is used to decide which search node ¥nd to bound the error of the greedy solution at each iteration
expand next). Details are given in the following section. of the algorithm.

We note that LAO*, a generalization of AO¥, allows for Note that some of this information is redundant. Neverthe-
policies that contain “loops” in order to specify behavior over|ess it is convenient to maintain all of it o that the algorithm
an infinite horizor{Hansen and Zilberstein, 200Me could ¢ap, easily access it. The algorithm uses the customary OPEN
use similar ideas to extend LAO* to our setting. However,3nq C|LOSED lists maintained by AO*. They encode the ex-
we need not consider loops for two reasons: (1) our probpjicit graph and the current greedy policy. CLOSED contains

lems have a bounded horizon; (2) an optimal policy will noteypanded nodes, and OPEN contains unexpanded nodes and
contain any intentional loop because returning to the samggges that need to be re-expanded.

discrete state with fewer resources cannot buy us anything.
Our current implementation assumes any loop is intentionag 2~ Algorithm

and discards actions that create such a loop. . . .
P Algorithm 1 presents the main procedure. The crucial steps

; are described in detail below.
3 ,The Algorlthm) . . . Expanding a node (lines 10 to 20)At each iteration, the al-
A simple way of understanding our algorithm is as an AG* gorithm expands the open nodavith the highest priorityy,,
variant where states with identical discrete component are exp, the greedy graph. Note that standard AO* expands only tip
panded in unison. The algorithm works with two graphs: podes, whereas in our algorithm a previously expanded node
» The explicit graphdescribes all the states that have been;an pe put back in OPEN (ling8). Therefore, the expanded
expanded so far and the AND/OR edges that connect themyode can be “in the middle of” the greedy policy subgraph.
The nodes of the explicit graph are stored in two lists: OPENrhe algorithm then considers all possible succesgars’)
and CLOSED. _ , _ of n given the state distributioR,. Typically, whenn is ex-
* Thegreedy policy(or partial solution) graph is a sub-graph panded for the first time, we enumerate all actiommossible
of the explicit graph describing the current optimal policy. in (5, x) (a € A, (x)) for some reachablg (P, (x) > 0),
In standard AO*, a single action will be associated with eachynq |l arrival states’ that can result from such a transi-
node in the greedy graph. However, as described before, mujipn (Pr(n’ | n,x,a) > 0).} If n’ was previously expanded
tiple actions can be associated with each node, because diiys it has been put back in OPEN), only actions and arrival
ferent actions may be optimal for different Markov states repy,gdes not yet expanded are considered. Inlinave check
resented by an aggregate state. whether a node has already been generated. This is not nec-
3.1 Data Structures essary if the graphis a tree (i.e., there is o/n.ly one way to get
to each discrete staté)In line 15, a nodern’ is terminal if
no action is executable in it (because of lack of resources)
In our application domain each goal pays only once, thus the
fiodes in which all goals of the problem have been achieved

The main data structure represents a search nodéecon-
tains:

e The value of the discrete state. In our application these ar
the discrete state variables and set of goals achieved.

* Pointers to its parents and children in the explicitand greedy 1\ye assume that performing an action in a state where it is not
policy graphs, as pail®’, a), wheren' is a parent/child node, ajiowed is an error that ends execution with zero or constant reward.
anda is an action that allows this transition. 2Sometimes it is beneficial to use the tree implementation of AO*

e P,(-) — a probability distribution on the continuous vari- when the problem graph @mosta tree, by duplicating nodes that
ables in node:. For eachx € X, P,(x) is an estimate of the represents the same (discrete) state reached through different paths.

1: Create the root node, which represents the initial state. 1: Z = {n} /In the newly expanded node.
2: P,, = initial distribution on resources. 2: while Z # () do
3: Va, = 0 everywhere irX. 3: Choose anode’ € Z that has no descendantih
4: gn, =0 4. Removen' from Z.
5: OPEN= {no}. 5. UpdateV,, following Eqgn. 1.
6: CLOSED= GREEDY = {). 6: if V,,» was modified at the previous stdpen
7: while OPENN GREEDY # () do 7 Add all parents ofy’ in the explicit graph taZ.
8. n = argmax,/coPENNGREEDY (Jn’)- 8 if optimal decision changes for sorfw’, x), P,/ (x) > 0
9: Moven from OPEN to CLOSED. then
10: forall (a,n’) € A x N notexpanded yet in and reachable | 9: Update the greedy subgraph (GREEDY)uinif neces-|
underP,, do sary.
11: if n” ¢ OPEN U CLOSED then o 10: Markn’ for use at line23 of Algorithm 1.
12: Create the data structure to represer@nd add the tran- - - -
sition (n, a, n') to the explicit gPaph. Algorithm 2: Updating the value functionig, .
13: GetH,,.
1‘51: X”éf?sﬁ?hﬁxgmhnere InX. to be updated after recomputing the greedy policy. More pre-
16- . Add n’ to CLOSED. cisely, P needs to be updated in each descendant of a node
17- else where the optimal decision changed. To update a noaee
18: . Add n’ to OPEN. consider all its parents’ in the greedy policy graph, and all
19: else ifn’ is not an ancestor of in the explicit grapithen | the actions: that can lead from one of the parentsitoThe
20: Add the transitior{n, a, n’) to the explicit graph. probability of getting ton is the sum over al(n’, a) of the
21: if some pair(a, n’) was expanded at previous stdp) then probability of arriving fromn’ undera, which is obtained by
22: UpdateV;, for the expanded nodeand some of its ances- convolving P,- and the transition probability of:
tors in the explicit graph, with Algorithm 2.
23: UpdateP,, andg,, using Algorithm 3 for the nodes’ that _ It
arg children of trg19 expa%deg node or of a node where the op- Po(x) = Z Pr(n | n’,x',a)
timal decision changed at the previous ste®)(Move every| (n',a)€8m
p 4
noden’ € CLOSED whereP changed back into OPEN. / Po(x') Pr(x | n', %', a,n)dx’. (2)
Jx!

Algorithm 1: AO* algorithm for hybrid domains.

Note that it is sufficient to consider only pair’, a) wherea

. . - . isthegr ion in’ for some reachable r rce level:
are also terminal. Finally, the test in lin® prevents loops in s the greedy action in” for some reachable resource leve

the explicit graph, as discussed in section 2. Q,={(n',a) e N x A:IxeX,

Putting a node from CLOSED back in OPEN when it is Po(x) >0, pu*,(x) = a, Pr(n|n',x,a) >0} ,
regenerated is not a feature of standard AO* as described
in [Pearl, 1981 We need this feature because each searciWherey;,(x) € Aisthe greedy actionifn, x). Note that this
node represents several Markov states: When we find @peration may induce a loss of total probability maBs
new path to an existing node, we might have reached somg_,,, /) because we can run out of a resource during the
Markov states that were not considered in the explicit graptiransition and end up in a sink state. When the distribution
before, and so these states need to be expanded. In othBs of a noden in the OPEN list is updated, its priority,
words, when we find a new path id, the state distribution is recomputed using the following equation (the priority of
in P,» may need to be updated (line 23) and actions that wergodes in CLOSED is maintained as 0):
not possible im’ before may become applicable. Similarly,
new (discrete) nodes may also become possible. On = / P (x)Hp(x)dx ; (3)
Updating the value functions (lines 22 to 23)As in stan- x€S(Pn)= X3
dard AO*, the value of a newly expanded node must be upwhere S(P) is the support of P: S(P) =
dated. This consists of recomputing its value function with{x € X : P(x) > 0}, and X° contains allx € X
Bellman’s equations (Egn. 1), based on the value functionguch that the statgn, x) has already been expanded before
of all children ofn in the explicit graph. This computationis (x°4 = ¢ if n has never been expanded). The techniques
discussed in Section 3.3. Note that these backups involve alised to represent the continuous probability distributions
continuous states € X for each nodenotjust the reachable P, and compute the continuous integrals are discussed in
X values ofxt. However, they consider only actions and ar- Section 3.3. Algorithm 3 presents the state distributions
rival nodes that are reachable according’to Once the value updates. It applies to the set of nodes where the greedy
of a state is updated, its new value must be propagated baclecision changed during value updates (including the newly
ward in the explicit graph. The backward propagation stopsxpanded node, i.e. in Algorithm1).
at nodes where the value function is not modified, and/or at
the root node. The whole process is performed by applying.3 Handling Continuous Variables
Algorithm2 to the newly expanded node. Computationally, the most challenging aspect of the algo-
Updating the state distributions (line 23): P,'s represent rithm is the handling of continuous state variables, and partic-
the state distributiomnder the greedy poligyand they need ularly the computation of the continuous integral in Bellman

1: Z = children of nodes where the optimal decision changedfinite humber of actions is, too, and Eqn. 2 may always be

when updating value functions in Algorithm1. computed in finite timé.
2: while Z # (¢ do
3: Choose a node € Z that has no ancestor i. 34 Properties
4: Removen from Z. . . -
5. UpdateP, following Eqn. 2. As fqr standard AO , it can be _sh_ovyn that if the heurlstlc
. e functions H,, are admissible (optimistic), aritithe continu-
6. if P, was modified at step then ;
7 Moven from CLOSED to OPEN. ous backups are computed exagcthen: (i) at each step of the
8: Update the greedy subgraphvinf necessary. algorithm, V, (x) is an upper-bound on the optimal expected
Updateg,, following Eqn. 3. return in(n, x), for all (n, x) expanded by the algorithm; (ii)

the algorithm terminates after a finite number of iterations;
(iii) after termination,V;,(x) is equal to the optimal expected
return in(n, x), for all (n, x) reachable under the greedy pol-
backups and Eqns. 2 and 3. We approach this problem usirigy (P.(x) > 0). Moreover, if we assume that, in each state,
the ideas developed [fFenget al, 2004 for the same appli- there is adoneaction that terminates execution with zero re-
cation domain. However, we note that our algorithm couldward then we can evaluate the greedy policy at each step of
also be used with other models of uncertainty and continuthe algorithm by assuming that execution ends each time we
ous variables, as long as the value function can be computdgéach a leaf of the greedy subgraph. Under the same hypothe-
exactly in finite time. The approach @Fenget al, 2004 ses, the error of the greedy policy at each step of the algorithm
exploits the structure in the continuous value functions of thds bounded by} .rprpyropEN 9n- THiS property allows
type of problems we are addressing. These value functiorigading computation time for accuracy by stopping the algo-
typically appear as collections of humps and plateaus, eagdtithm early.

of which corresponds to a region in the state space where

similar goals are pursued by the optimal policy. Such struc4 Experimental Evaluation

ture is exploited by grouping states that belong to the samgye yegted our algorithm on a slightly simplified variant of the
plateau, while reserving a fine discretization for the regions gver model used for NASA Ames October 2004 1S demo
of the state space where it is the most useful (such as ”ﬁ’ederseret al, 2009. In this domain, a planetary rover

edges((j)f pla:]eaus). b . 2004 . moves in a planar graph made of locations and paths, sets
Toadapt the approach tiengetal, » WE Make Some 5 instruments at different rocks, and performs experiments

assumptions that imply that our value functions can be représp he rocks. Actions may fail, and their energy and time
sented as piece-wise constant or linear. Specifically, we ag;

hat th . induced b d onsumption are uncertain. The problem instance used in
sume that the continuous state space induced by every digy,, preliminary experiments contains 43 propositional state
crete state can be divided into hyper-rectangles in each

: ; o ; . Variables, 37 actions and 5 goals (rocks to be tested). There-
which the following holds: (i) The same actions are appli-tore “there ar@?® different discrete states, which is far be-
cable. (ii) The reward function is piece-wise constant or lin-

Ot : i yond the reach of a flat DP algorithm. Resource consump-
ear. (iii) The distribution of discrete effects of each action arejos are drawn from two type of distributions: uniform and

identical. (iv) The set of arrival values or value variations for 5| and then discretized. The results presented here were
the continuous variables is discrete and constant. ASSUMRyyained using a preliminary implementation of the piecewise
tions (i-iii) follow f_rom _the hypotheses mao_le In our domain qnsiant DP approximations describedfenget al, 2004
models. Assumption (iv) comes r(]j_ovr\]/r} to discretizing the acyaqeq on a flat representation of state partitions instead of kd-
tions resource consumptions, which is an approximation. lfeag This js considerably slower than an optimal implemen-
contrasts with the naive approach that consists of discretizeion 1o compensate, our domain features a single abstract
ing the state space regardless of the relevance of the partitiqy in ,ous resource, while the original domain contains two

introduced. Instead, we discretize the action outcomes ﬂrs}esources (time and energy). We used the following admissi-
and then deduce a partition of the state space from it. Thge heyristic:H,, is the constant function equal to the sum of
state-space partition is kept as coarse as possible, so that oy, tilities of all the goals not achievediin

the relevant distinctions between (continuous) states are takenyyis varied the initial amount of resource available to the

into account. Given the above conditions, it can be showng e, As available resource increases, more nodes are reach-
(see[Fenget al, 2004) that for any finite horizon, for any apje and more reward can be gained. The performance of
discrete state, there exists a partition of the continuous spagfhe algorithm is presented in Table 1. We see that the hum-
into hyper-rectangles over which the optimal value functionye ¢ reachable discrete states is much smaller than the total
is piece-wise constar_lt or linear. The |mplementat|on reprenumoer of states2¢%) and the number of nodes in an opti-
sents the value functions as kd-trees, using a fast algorithig,5| nojicy is surprisingly small. This indicates that AO* is

to intersect kd-treefFriedmaret al, 1977, and merging ad- 1 icylarly well suited to our rover problems. However, the
jacent pieces of the value function based on their value. Wgumber of nodes expanded is quite close to the number of
augmented this approach by representing the continuous stgle; -haple discrete states. Thus, our current simple heuristic

distributions P,, as piecewise constant functions of the CON-.c v sliahtly effective in reducing the search space. and
tinuous variables. Under the set of hypotheses above, if the y Sightly g pace,

initial probability distribution on the continuous variables is 3A deterministic starting stateq is represented by a uniform
piecewise constant, then the probability distribution after anyistribution with very small rectangular support centerestdn

Algorithm 3: Updating the state distributiors,.

oSS N S S-S A < A search algorithms at large. Our preliminary implementation
40 | 04 176 | 163 | 189 | 9 | 1 | 1378 of this algorithm shows very promising results on a domain
28 %-2 g;g ggg ggg %2 ; 14285;558 of practical importance. We are able to handle problems with
. 48 . .
70 | 134 | 1548 | 1399 | 1263 | 22 | 2 | 25205 2% discrete states, as well as a continuous component.
80 | 324 | 2293 | 2148 | 2004 | 33 | 2 | 42853 We are now implementing the full algorithm, on whose
90 87.3 3127 3020 2840 32| 2 65252 i i i i -
100 | 1164 | a67s | 2139 | 3737 | 17 | 2 | 109680 p_erfor_mance we shall report in the fln.al version. Thls_ algo
110 | 1510 | 6594 | 5083 | 5446 | 69 | 3 | 155733 rithm includes: (1) a full implementation of the techniques
120 | 2133 | 12564 | 11284 | 9237 | 39 | 3 | 268962 described ifFenget al., 2004; (2) a rover model with two
0| e e | AT | ey | 53 | 5| WL continuous variables; (3) a more informed heuristic function.
150 | 1318.9 | 36504 | 36001 | 32997 | 22 | 3 | 1055056 We will generate this heuristic function by solving the orig-

inal planning problem while assuming deterministic transi-
Table 1:Performance of the algorithm for different initial resource tions for the continuous variables, i.€2(x/|n, x,a,n’) €
levels. A: initial resource (abstract unit). B: execution time (s). C:{0,1}. If we assume actions consumes the minimal amount
reachable discrete states. D: # nodes created by AO*. E: # nodexf each resource, we obtain an admissible heuristic function.
expanded by AO*. F: # nodes in the optimal policy graph. G: # A (probably) more informative, but inadmissible heuristic
goals achieved in the longest branch of the optimal solution. H: #unction is obtained by using the mean resource consumption.
reachable Markov states. Our central idea is to use treame algorithnto solve both

the relaxed and original problem and to use the value func-

Initial Execution # nodes # nodes : ot :

resource| e e created by AQ* | expanded by AO* tion V,, for the relr?lxed p_roblem as the heyr|§t|c funct|or]. The
130 | 000 | 4268 17684 14341 relaxed problem is easier to solve, (preliminary experiments
gg g-gg g;ig gi;g iggég show that it requires 10% of the running time of the current
130 150 3984 17462 13740 algorithm) and unlike typical heuristic functlons which are
130 | 2.00 | 3300 17462 13740 recomputed for each search state, one expansion from the ini-
1301 2501 3200 17417 13684 tial state should provides us with values that can be used for
130 3.00 322.1 17417 13684
130 | 350 | 3183 17404 13668 most reachable nodes.
130 4.00 319.3 17404 13668
130 4.50 319.3 17404 13668
130 | 500 | 3185 17404 13668 References
130 | 550 | 3204 17404 13668 [Altman, 1999 E. Altman. Constrained Markov Decision Pro-
130 | 6.00 | 3155 17356 13628 cessesChapman and HALL/CRC, 1999.

. [Bresinaet al, 2009 J. Bresina, R. Dearden, N. Meuleau, S. Ra-
Table 2: Complexity of computing as-optimal policy. The opti- makrishnan, D. Smith, and R. Washington. Planning under con-

mal return for an initial resource of 130 is 30. tinuous time and resource uncertainty: A challenge for Al. In

- . . Proc. of UAI-02 pages 77-84, 2002.
reachability makes the largest difference. This suggests thlilt | q | q h
much progress can be obtained by using better heuristics. ThEenget al, 2004 Z. Feng, R. Dearden, N. Meuleau, and R. Wash-

ington. Dynamic programming for structured continuous Markov
last column measures the total number of reachable Markov degcision gmmemg %roc. of 8A|-04 pages 154-161, 2004

states, after discretizing the action consumptions §5emg Friedmaret al. 197 4. Friedman. J.L. Benl nd RA

Qt al, 200,4' Th's is the space tha_t a forward .search algo—[Iggkeéli.neAnaeflgc?ritEm;] for find?ndg baés’t r#atcheg in?())/’ga?itr?mic ex-

rithm manipulating Markov states, instead of discrete states, pected time ACM Trans. Mathematical Softwarg(3):209-226,

would have to tackle. In most cases, it would be impossi- 1977.

ble to explore such space with poor quality heuristics such agHansen and Zilberstein, 200E. Hansen and S. Zilberstein.

ours. This indicates that our algorithm is quite effective in LAO*: A heuristic search algorithm that finds solutions with

scaling up to very large problems by exploiting the structure !00Ps.Artificial Intelligence 129:35-62, 2001.

presented by continuous resources. [Pearl, 1984 J. Pearl.Heuristics: Intelligent Search Strategies for
WhenH,, is admissible, we can bound the error of the cur- Computer Problem SolvingAddison-Wesley, 1984.

rent greedy graph by summing over fringe nodes. In Ta- [Pedersemtal, 2009 L. Pedersen, D. Smith, M. Deans, R. Sar-

ble 2 we describe the time/value tradeoff we found for this do- 9ent, C. Kunz, D. Lees, and S.Rajagopalan. Mission planning and

main. On the one hand, we see that even a Igrge; co_mpromise Eg(rjgteot gggé'?gég Egﬁgggggugéﬁg%?ggésp. lacemenubmit-

In quality leads to no more than 259 reduction in time. OnHSmith 2004 D. Smith. Choosing objectives in over-subscription

the other hand, we see that much of this reduction is obtaine o ; ' -

with a very small priced = 0.5). Additional experiments are planning. InProc. of ICAPS-Odpages 393-401, 2004.

; e [van den Briekt al, 2004 M. van den Briel, M.B. Do
required to leam if this Is a general phenomenon. R. Sanchez and, and S. Kambhampati. Effective approaches

for partial satisfation (over-subscription) planning. Prnoc. of
5 Conclusions AAAI-04 pages 562-569, 2004.

. . Younes and Simmons, 20p4H.L.S. Younes and R.G. Simmons.
We presented a variant of the AO* algorithm that, to the best Solving generalized semi-Markov decision processes using con-

of our knowledge, is the first algorithm to deal with: limited tinuous phase-type distributions.Pmoc. of AAAI-04 pages 742—
continuous resources, uncertainty, and oversubscription plan- 747, 2004.

ning. We developed a sophisticated reachability analysis in-

volving continuous variables that could be useful for heuristic

